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STATIONARY EIGENMODES AND THEIR STABILITY DURING WAVE PROPAGATION
IN A MEDIUM WITH QUADRATIC AND CUBIC NONLINEARITIES WITHOUT DISPERSION

P. P. Banerjee, W. Choe, G. Cao and W. Hereman

1. Introduction

It is well known that solitary waves can exist in a medium with a

quadratic nonlinearity and dispersion. The physical basis for solitary wave

formation in such a system is the critical balance between the steepening

effect of nonlinearity and the smoothening effect of dispersion. Since

solitary waves do not change their shape during propagation, they can be termed

stationary traveling wave eigenmodes (with a continuous spectrum) of the system

[1). [Unless otherwise stated, we will use the term "solitary wa';es" to denote

aperiodic (e.g. pulse-type) solutions.] If, furthermore, the solitary waves

preserve their shape upon mutual interaction, they may be called "solitons"

[2). Periodic solitary waves (e.g. cnoidal waves) have a discrete spectrum

which, however contains a fundamental frequency and an infinite number of

harmonics.

Analogous to the continuous spectrum case, stationary eigenmodes may also

exist for the case of a discrete number of propagating frequencies. As shown

in [3), stationary eigenmodes comprising frequencies (0 and 2W0 may exist in a

medium with quadratic nonlinearity and dispersion; and perturbations around the

steady state exhibit periodic or "recurrent" behavior (4), similar to the

celebrated Fermi-Pasta-Ulam (FPU) recurrence [5).

In this paper, we look at the possibility of stationary eigenmodes (with

continuous as well as discrete spectra) in a medium with quadratic and cubic

nonlinearities, and no dispersion. A physical picture for the existence of

solitary waves may be portrayed as follows: Consider, for instance, a

kinematic wave equation of the form [6)

-ta + c0 (I + 2 3) aw- 0,

where ly represents the wavefunction, c0 is the (linear) phase velocity



and P 2 , 3 denote the quadratic and cubic nonlinearity coefficients. Consider,

for now, the case where 02 > 0, 03 < 0 and where xV at t - 0 is a baseband

(pulse-type) signal greater than zero. Then with time, the leading edge of the

pulse steepens while the trailing edge smoothens under the action of the

quadratic nonlinearity alone, while the reverse occurs under the effect of the

cubic nonlinearity (see Fig. 1). The combined effect can be visualized as a

balancing process whereby the signal may finally evolve into a shape which

remains unchanged during propagation.

The organization of the paper is as follows: In Section 2, we discuss

aperiodic and periodic solitary wave solutions of a model equation with

quadratic and cubic nonlinearities only, viz., the nonlinear Klein-Gordon

equation without dispersion. Results for one-dimensional propagation only are

presented; for extension to higher dimensions, the reader is referred to (7].

In Section 3, numerical simulations on interactions of aperiodic solitary wave

solutions are presented. Results show instability upon collision; however,

this can be removed by incorporating a small amount of "saturating" fourth-

order nonlinearity in the system. In Section 4, we study the two frequency

case, viz., the fundamental and its second harmonic, by starting from the

kinematic wave equation (1) and establish relations betweern the spectral

amplitudes in the stationary case. A stability analysis of the stationary

eigenmode in the discrete frequency case is also performed; these results are

presented in Section 5. Perturbations around the steady state sometimes

exhibit periodic behavior, similar to FPU recurrence. For the solution to the

initial value problem, the reader is referred to E8].

2. Aperiodic and Periodic Solitary Wave Solutions of the Nonlinear Klein

Gordon Equation without Dispersion

We shall take, as our model equation, the nonlinear Klein-Gordon (NKG)

equation without dispersion in the form



2c 2  2 2+ 3
2 - 2 -A4 + A31 ; 1 = 14 (x,t), (2)

at 2 0ax2 2 3

where c0, as in (1), represents the linear phase velocity and where A2 , A3

denote the quadratic and cubic nonlinearity coefficients. In our quest for

solitary wave solutions to (2), we introduce a traveling frame of reference and

renormalize according to

1 A2~ 1/2
jc 2 (x-vt), A 3 > 0,

SA3

A2

to get

d 2

Now multiplying (4) by dTJ/dC and integrating w.r.t. 4, we obtain

S2 = 2 .14 + K (5)
SdC 3 2

where K is an integration constant. Assuming that at C = 0, 4'= TI0 and

0

d//d = 0, we get

1 4 2 3 (6)
2 0 3 0

In order to reduce (5) to a tractable integral, we put

+ a (7)

and set the constant term equal to zero; this gives

'P .s2 22 3 + 2j 1(ci)2- (2c 2 - 2a 3 ) T + (2 3 2 ) - 2a) 2(

with either

a - a I - ' O, (9)

or given by the (real) roots of the cubic equation

P+ 2 4 + + IV a +O 0 . (10)

a 0 3 +' 0  3 0 0)3 0

In what follows, we will discuss the two cases (a) W - ± and

0 3



4
(b) '0 - 4 one by one. It turns out that case (a) yields the aperiodic0 3

(algebraic) solution while case (b) gives periodic solutions.

2.1 Case (a): '0 " 4/3
0

The possible values of a are ai = 4/3 (from (9)) and a2 = 0 (from (10)).

We will discuss the latter possibility; it can be easily shown that the other

choice leads to identical results.

For the latter choice, K = 0 and the ODE in (5) can be readily solved to

give the aperiodic algebraic solitary wave of the form (see Fig. 2)

T(C) = 4/3

1+4 219 (11)

Note the similarity of (11) with the solitary wave solution of the

Benjamin-Ono equation [9). Note that the amplitude of the solitary wave is

fixed through the choice of the nonlinear coefficients A2, A3 (see Eq.(3)).

The velocity v(<c ) may be related to the width of the solitary wave

through use of the same equation.

2.2 Case (b): T0 0 4/3

The possible values of a to examine are now given by (9) and the roots of

the cubic equation (10). We state here a lemma, without proof, regarding the

roots of the cubic equation. The proof of this is detailed in (7].

Lemma 2.1 Of the three roots of (10), one is real and the other two are

complex conjugates.

Thus, it suffices to consider the two real roots of (= 1,2) for each

value of T0" Now, from (8), upon writing

" ' ' lml0*



'(12)

we have
[ d J2 - a 3 + b 2  + c + d p (13)

where 2 3 _32 2

a = 21 2a ; b = -3 ; c = -2 ; d = - 1/2. (14)
3

The solution *, and hence W and T, can thus be expressed in terms

of Jacobian elliptic functions (10]. Hence T is periodic in nature.

Examining (4), it is obvious that if d'(0)/dC = 0, then P0 > 1(<l)

corresponds to the maximum (minimum) value of T. We shall call the maximum

(minimum) value 'P with 'eV denoting either of the two.
M(m) ext

Now, it may be readily seen that 'P and Ct both satisfy a quartic
ext

equation of the form as in Eq. (6), with T0 replaced by TPxt and a0 et

respectively. Since we have shown that a has two real roots, they must be IF

and P . Thus if IP is the given initial value, '(M will follow as the
m M(m) M (M)

solution to (10). Furthermore, straightforward arguments may be advanced to

show that if 1 < 'P < 4/3, then 0 < 'P < 1, and if T > 4/3, then 'P < 0.
M rn M m

In order to explicitly evaluate the solution to (13), we have to

calculate the roots of the polynomial p(O). We state, again, a lemma without

proof concerning the roots of the cubic polynomial. The proof is detailed

in [7).

Lemma 2.2 The polynomial p(o) in (13) has only one real root

1
-a (15)

ext

where a = 4 if' T '
M(m) ext m(M)"

The above lemma exposes four different cases to be considered.

Corresponding to a given initial .ondition P = 'T (=IF ), there are two0 ext (m)

values of a; a1 > 1 and a2 < 1. Suppose the initial condition is 'P. The two
1 2 M

values of X are 'P and 'm If, next, we choose the initial condition as the
M m

IF corresponding to the 'P chosen above, we will, once again, get twc values
m M

M M M



of a, which are the same as before. Rigorous relationships between these four

solutions have been derived in (7]; in this writeup we will only present

selected results. This is in view of the fact that the second order ODE as in

(4) should have a unique solution once two initial conditions (viz., the value

of the function and its derivative at 0) have been specified, irrespective

of the value of a.

For instance, for a = a = 4M(>1), we obtain from (13),
1M

+-w, dJ = do (16)

where

=1 a 1

i c= l=,U ext - I= =PM  m- M
(using (15)), (17)

3 b €2 c1 dl

~'~ aPwi -, + / al al a
Pi a1 PW a=a1=T + 1 0+a1 0+a1

1 (using (13)), (18)

where a,, b, c1 d are defined by (14) with a = ai = ' , and
c 11 M

1 denotes an integration constant to be determined from the initial

condition(s). After some algebra and using (7), (12) and (14) it follows

that [10]

3 2 1/2
1 + cn[(2a 1 -2 1 ) l( l ]

3 2 1/2 (19)
( 2l )+P A cn[12 -2 I ) a112-)I ) ]

where

21/2 (02(20)

and where the parameter cos 2 of the cn function is given by

S1 1 1/2cos 81 1 -r = + /[ .(21)

The period of the cn function, and hence of T' is given as [10]

4K(l-ml) (22)

(2o13- a 2 ) 1 / 2 1

1 1i1



where
n/2=-g (i-sin 2 ) .

1 12 d 
(23)

0

Corresponding to initial conditions IF and IF the respective constants
M in,

I in (19) may be calculated. The results are, using (17),

P ( ) ' + 1 n M 1 (24)

IM (m) M14 2 )( P 2 ) ( 2 4P3 
2 4.?, /2 k

It is easily seen that there is a half-period shift (=2K (1-m )) between TIM

and Tlm' as is to be expected.

As an example, consider the case where P0 - 2; '(0) = 0. From (24), the

analytic solution reads

1 + 4.947 cn(I.530;)

Mii = 3.041 - 0.067 cn(1.530) 25)

with 1-mI = 0.571 and A = 5.015. This is plotted in Fig. 3.

In passing, we remark that whether the periodic solution can be

decomposed into a series of associated aperiodic solitary waves, as can be

achieved for solutions of the KdV equation [11], is still under investigation.

3. Interaction of Algebraic Solitary Waves and their Stability

In this Section, we present a numerical scheme to test the stability of

the algebraic solitary waves derived in (11) upon mutual interaction and

propose a method to "stabilize" them. The procedure followed is similar to a

recipe from nonlinear optics where radially symmetric solutions in a medium

with cubic nonlinearity are sometimes stabilized by incorporating a small

amount of a saturable fifth-order nonlinearity in the system [12].

The numerical scheme essentially employs an explicit finite-difference

method (13] to discretize the NKG equation without dispersion(Eq. (2)) as:



i 2 2 i+l i-_ - ( -

j C0 (At/Ax) (W~ +1 W. 2W) (W 2W

+ (At) 2 [A 2(W ) 
2 + A 3 (W4) 

3] (26)

where i and j refer to the number of increments, Ax and At, in space and time

respectively. However, for numerical analysis, it is required to show that

the above scheme is convergent. Unfortunately, the proof of convergence is

rather involved and, even when possible, a satisfactory theory can only be

advanced for linear PDEs. We follow here a suggestion by Ablowitz et al (14]

that a certain degree of stabilization can be reached in the numerical scheme

i
by using the average of several adjacent space increments to replace 11 in the

nonlinear term(s), viz,

in (1 i-l i i+l n
( ) n-4 (3 (Wj + W41 + ) , (27)

and by using Ax = c 0At.

Fig. 4 shows the three regions we employ for our computer simulations. I

and II are linear nondispersive while III represents the quadratically and

cubically nonlinear region. Our numerical experiment involves making two

(identical) pulses traveling to the right and left in regions I and II

respectively. These pulses eventually enter region III where they interact

with each other. Outflow (matched) boundary conditions are simulated at x - 0

and x = 8 (see Fig. 4) to prevent any reflections from the extremities.

Interface boundary conditions at x = 2 and x = 6 are set such that the

wavefunction and its spatial derivative are continuous across each interface.

The initial conditions are set from a knowledge of the single aperiodic

solitary wave solution. Note that from (11), the denormalized algebraic

solitary wave may be written, using (3), as

4A2

3A 3  (28)

2A 2 (x-vt)
2

1+ 2

9A (c 2- v 2
3 0



As one initial condition we thus set

)#(x,O) = 2 x (-4/3)(A 2/A3) 21 +2 + 2A2 (x-x1 ) 1 + 2A2 (x-x2 )2

2 2 22 J
9A (c -v ) 9A (c -v 2)

(29)

where xi, x2 lie in regions I and II respectively. The differential initial

condition viz., W t(xO), is set equal to zero. This facilitates propagation of

each pulse in both positive and negative directions, starting from each linear

region. At t = 0, the right and left propagating pulses overlap, accounting

for double the amplitude 2 [_41A 2 After some time, each initial pulse
3A 

3

breaks up into two with amplitudes equal to 2-~ one traveling toward
3 A3

region III, the other toward an extreme matched boundary (at x - 0 or

x = 8).

2 2We choose v = 1.0, c. = 1.0050 [c - v = 0.01), A2  -, A3 = 1 and

x= 1, x2 = 6 for our numerical experiment. The results are plotted in the

sequence of Figs. 5(a)-(g), from which we may easily see that the initial

waveforms distort severely due to interaction in the nonlinear region. No

appreciable distortion is observed at the linear-nonlinear interface.

In what follows, we show that the observed distortion may be removed by

incorporating a higher order saturating nonlinearity in the system. The

equation describing the modified system can be expressed as

2 2 2 A33 4 4

- C2 A + + ; A < 0, A > 0, A < 0. (30)
2 0 2 A2 W4 A3 W A4  A2  A3 4at ax



Eq. (30) is then programmed with the same values of A2, A 3, v amd c 0 as

before, and with A 4 = -0.12. This value of A 4 was chosen from a series of

trial values incorporated to minimize distortion upon interaction. The

results are plotted in the sequence of Figs. 6(a)-(g), showing that with the

help of stabilization by the saturating fourth-order term, the algebraic

solitary waves, again, preserve their shape upon interaction. Numerical

experiments with two solitary waves moving in the same direction (but with

different velocities, and hence, widths) and with sequences of algebraic

solitary waves are currently under way.

4. Steady States in the Discrete Case: Fundamental and Second Harmonic

In the discussion above, aperiodic and periodic solitary wave solutions

were derived for a medium with quadratic and cubic nonlinearities, using the

NKG equation without dispersion as a model. The aperiodic solitary waves can

be regarded as stationary traveling wave eigenmodes but having a continuous

frequency spectrum. The periodic solitary waves, however, can be thought of as

a collection of discrete frequencies (viz, the fundamental and its infinite

set of harmonics) that form a stationary eigenmode. In this section, we will

show that it is possible to establish stationary eigenmodes even for two

frequencies, viz., the fundamental and its second harmonic, in a medium with

quadratic and cubic nonlinearities. We will take, as our starting point, the

nonlinear kinematic wave equation as in (1), which though different from the

NKG equation (2), nevertheless provides a good model for such a medium.

To study the spatial evolution of the spectral amplitudes at the

fundamental (w 0 ) and the second harmonic (2 0), we substitute

1 -2 jnw t-k x)

(x't) - 1 2 G(x)e (31)
2 n;---2_ n

in (1) with G - 0 and G-n - G to ensure that the wavefunction is

0n



real. The ratio to0/k0, where k0 represents the propagation constant of the

fundamental, is taken to be equal to the linear phase velocity c0 in (1). In

general, the propagation constant for the nth harmonic may differ from

nk0 ; however, if so, it should show up in the expression for Gn (x). Using the

"slowly-varying" assumption

SdG n

J-j n<<nk Gr (32)

together with the normalizations

-Jl A -Jo2 A
ue G 1/R, ve = G2/R

12 2 1/2

R G J 1 (0)j 1 2 (i

I f2Rk x, (33)

and the definitions

A 03 R
Q 2

= _ 2 - 2 1' (341)

we finally arrive at a set of three coupled equations linking the (real)

spectral amplitudes u,v and the relative phase difference 0.

du sin (35a)
dv

dv 2 (35b)- -u sin 0,d

dQ u2  2 2 (35c)
(2v - u ) cos 0 + 2Q(v -u)

v



with the relation

2 2
U +v -1 (36)

expressing the conservation of energy.

Eqns. (35) may be compared with the evolution equations derived by

Armstrong et al (14] in connection with harmonic generation in optics in a

(quadratically) nonlinear, dispersive dielectric. While Eqns. (35a,b) are

identical to Armstrong's, in (35c) only the first term on the RHS is identical,

while the second term is to be compared with As in (14] which represents the

phase mismatch between the fundamental and the second harmonic in a dispersive

medium.

The "relative phase-locked" stationary eigenmode may now be defined as

follows:

du dv dO (37)

From (35c), this means (using (33) and (34), (36))

G = 2 + afG 2s 112 G A 2 c038)

li 1 +- IG 25  J 12s 02cos

where the subscript s has been used to denote the steady state.

Observe from (35a,b) that possible values of 0 in this case are 0 and n (cos5

e = ± 1). The variation of the second harmonic amplitude with the fundamental5

amplitude for the stationary eigenmode is plotted in Fig. 7. Note that when a

< 0, G2 sI is a multi-valued function of IG Is. The explicit relations for

and 02 may be obtained from the respective explicit differential

equations (not written here) which occur as an intermediate step in the

derivation of (35c). It may be readily checked that *i and *2 vary linearly

with k. Thus, the propagation constants of the fundamental and the second



harmonic are indeed modified in the steady state. However, the new (constant)

phase velocity is different from c0 *

In the following section, we will perform a stability analysis of the

stationary eigenmode(s) to find which branches of the steady state plots (see

Fig. 7) are stable and which are not. Whenever possible, the period of the

perturbation will also be calculated.

For a description of the solution to the initial value problem starting

from Eqns.(35), the reader referred to (8].

5. Stability Analysis of the Stationary Eigenmode (Fundamental and Second

Har monic)

We first rewrite (35c) as

d(sin 8) = (2v-_U_- )(1-sin 2 ) ± 2Q(v2 u2 ) 1lsin28 (39)

dt v

and perturb the system (35a,b), (39) as:

u = u + Au
s

v=v + Av
5

sin 0 - (sin 8) + A(sin 8). (40)
s

Up to first order in the perturbations, this gives the following linearized set:

d(Au) u v A(sin 8),
dt s s

d( v) 2
d(& ) -u A(sin 8),

d[A(sin 0)) 0 + v s -2 ± 8QVs) Av. (41)

Now assuring the explicit forms of the perturbations as proportional to

e , the permissible values of k (for nontrivial solutions) are:

1

j/u ± BQv). (42)2,3 " j (3 + v8 V( 2



The condition for stability requires that the expression under the radical sign

should be positive; in denormalized form this translates to

4R2-31G I

IG2 I - 4a(R2_G I 2 for a > 0. (43)
2a < 4(R 2_IG is1 2)

Consider the case a > 0. It may be easily checked from (43) that any value of

IG lsI and IG2s I (as given in Fig. 7(a)) will be stable. For a < 0, the stable

and unstable regions are drawn in Fig. 8. When this figure is juxtaposed on

Fig. 7(b), it is clearly seen that the upper "branch" in Fig. 7(b) is unstable,

while the lower "branch" is stable. We conclude, therefore, that the

stationary eigenmodes in a medium with quadratic and cubic nonlinearities can

have two stable states in the two-frequency (fundamental and second harmonic)

case.

6. Conclusion

Stationary traveling wave eigenmodes, with continuous as well as discrete

spectra, have been derived for a medium with quadratic and cubic

nonlinearities, and no dispersion. The physical basis for the existence of a

balance between the different nonlinear effects has been established.

Aperiodic (algebraic) solitary waves, which occur as solutions to the NKG

equation without dispersion, are an illustration of stationary eigenmodes with

continuous spectra. These are, however, unstable upon mutual interaction, but

may be "stabilized" by adding the right amount of a higher order saturating

nonlinearity in the system. Periodic solitary waves in such a system may be

expressed in terms of ratios of 'cn' functions, and may be looked upon as

stationary eigenmodes with discrete, albeit infinitely many, frequency

components. For yet another nondispersive system which is quadratically and

cubically nonlinear, but modeled by a different equation, we have established

stationary eigenmodes comprising the fundamental and the second harmonic and

examined their stability. Not reported in this paper, but presented in (8] is



the fact that in the solution to the initial value problem in this case,

periodic exchange of energy between the fundamental and the second harmonic is

observed, similar to FPU recurrence.
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Fig.2 Profile of the aperiodic algebraic solitary wave

Fig.3 Profile of a periodic solitary wave with T =2
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Fig.4 The three regions for the numerical experiment. Regions
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and dispersive.
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